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Figure 10.1. Oocyst of Cryptosporidium parvum. 
Cold acid fast stain. 5 µm.

Figure 10.2. Histologic section of small intestine 
of patient suffering from HIV/AIDS, infected with C. 
parvum (arrows). Courtesy J. Lefkowitch.

10. Cryptosporidium parvum
(Tyzzer, 1929)

Introduction

The genus Cryptosporidium comprises a very large 
group of closely related obligate intracellular parasites 
that cause transient diarrheal disease in most mam-
mal species throughout the world, including humans. 
All are transmitted through fecally contaminated food 
and water.1,2,3 Most species have broad host ranges. 
Eight species have been shown to infect humans on a 
regular basis: C. parvum, C. hominis, C. meleagridis, 
C. felis, C. canis, C. muris, and Cryptosporidium pig 
and cervine species. 4-10 The majority of human infec-
tions are caused by C. parvum (sometimes referred to 
as C. hominis), which also infects sheep, cattle, birds, 
rodents, and non-human primates. This chapter will 
concentrate on C. parvum, with the assumption that 
disease in humans caused by other related species 
gives a similar clinical picture. In 1993, the city of Mil-
waukee, Wisconsin experienced the largest waterborne 
outbreak of diarrheal disease ever documented in the 
United States. Over 400,000 people suffered from in-
fection with C. parvum.11 In immunocompetent infected 
individuals, the most serious manifestation of infection 
is diarrhea of short duration, although sometimes se-
vere. In contrast, infants, non-AIDS immunocompro-
mised adults, and people suffering from HIV/AIDS of-
ten experience severe, protracted diarrhea, sometimes 
resulting in death.12 C. parvum can be grown axenically 
in vitro, using monolayers of epithelial cells.13, 14   The 
genome of Cryptosporidum hominis (parvum) has 
been determined.15, 16

Historical Information

Tyzzer, in 1907,17 provided a description of Cryp-
tosporidium based on histologic sections of mouse in-
testine, in which the parasites were observed attached 
to the epithelial cells. The pathogenic characteristics of 
Cryptosporidium were not recognized until much later, 
when Slavin, in 1955,18 established that this protozo-
an caused diarrhea in turkeys. Nime and coworkers, 
in 1976,19 described human diarrheal disease due to 
Cryptosporidium, and Meisel and colleagues, in 1976,20 
were the first to report it in immunocompromised hu-
man hosts. 

Life Cycle

A comprehensive review of the biology of C. par-
vum is available.21 Infection begins when the host in-
gests thick-walled sporulated oocysts (Fig. 10.1), each 
of which contains four sporozoites. A minimum of 30 
oocysts are necessary to initiate infection,22 while the 
calculated ID50 for healthy volunteers was 132 oo-
cysts.23

The sporozoites excyst when the oocyst enters the 
small intestine. Little is known regarding excystment in 
vivo. A protein-plugged suture in the cyst wall blocks 
the escape route for sporozoites.24 in vitro, excystment 
occurs after exposure to 37° C or by pretreatment of 
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Figure 10.3. Transmission EM of C. parvum. Note 
microvillus-derived membranes encasing parasites 
(arrows). Courtesy J. Lefkowitch.

Figure 10.4. Transmission EM of C. parvum meronts. 
Courtesy M. Belosevic.

purified oocysts with either sodium taurocholate and 
trypsin,25 or with sodium hypochlorite (bleach) alone, 
followed by introduction into culture medium. Oocysts 
treated with bleach can be inhibited from excysting by 
exposure to human α-1-anti-trypsin inhibitor26 or inhibi-
tors of arginine aminopeptidase.27 Like other enteric 
parasites with resistant outer structures (e.g., eggs of 
helminths and cysts of Giardia and Entamoeba), al-
teration of the outer surface may be a prerequisite for 
the organism to receive environmental cues, triggering 
the synthesis of enzymes of parasite origin required for 
emergence.

Sporozoites attach to the surface of epithelial 
cells (Fig. 10.2), most likely aided by numerous pro-
teins secreted from their rhoptries and micronemes. A 
monoclonal antibody, designated 3E2, binds solely to 
the apical complex of the organism (the region where 
microneme- and rhoptre-specific proteins exit from the 
parasite), and inhibits invasion in vitro.28 On Western 
Blot analysis, this antibody recognizes numerous epit-
opes, ranging from 46 kDa to 1300 kDa. Furthermore, 
a purified microneme-specific mucin-like 900 kDa gly-
coprotein can prevent invading parasites from attach-
ing to their target cells when employed in competitive 
inhibition studies.29

After the sporozoite attaches to the cell surface, 
microvilli in the area immediately adjacent to the para-
site fuse and elongate, enveloping the parasite to cre-

ate a unique intracellular environment (Fig. 10.3). This 
event may also be triggered by apical end-associated 
secreted proteins. A specialized membrane structure 
develops at the interface between the parasite and the 
host cell. Nutrients are thought to pass through this 
region, since parasite-specific ABC transporters have 
been identified there by means of immunofluorescent 
monoclonal antibodies.30The sporozoite differentiates 
into the type I meront (Fig. 10.4) and division ensues, 
producing four haploid merozoites. The merozoites are 
released and attach to new epithelial cells, now dif-
ferentiating into Type II meronts. Macrogamonts and 
microgamonts (pre-sex cells analogous to the game-
tocytes of plasmodia) are produced inside these new 
meronts. Following their release, microgamonts fuse 
with macrogamonts, forming thick-walled zygotes 
termed oocysts. This stage sporulates within the large 
intestine, and four haploid sporozoites are produced. 
Oocysts can also be thin-walled. In this case, they 
sporulate and excyst within the same host, producing 
an autoinfection that may endure for months to years. 
Even in these cases, however, thick-walled oocysts are 
produced as well.

Thick-walled oocysts pass out in feces, and can in-
fect another host. This type of oocyst is environmental-
ly resistant, and can remain viable for months to years 
in soil, given optimum moisture conditions.31 

Cellular and Molecular Pathogenesis

Until recently,32 one of the most perplexing and frus-
trating aspects of the biology of C. parvum was its abil-
ity to avoid being affected by a wide variety of drugs.33, 

34 The altered microvillus-derived membrane complex 
that surrounds the parasites while they are attached 
to epithelial cells has proven highly impermeable to all 
chemotherapeutic agents, with the one possible ex-
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ception, nitazoxanide. That is why speculation favors 
the entry of nutrients through the attachment zone be-
tween the parasite and the surface of the host cell. The 
fact that ABC transporters have been identified in this 
region30 is further indirect evidence in support of this 
hypothesis. Cellular or molecular events that result in 
the alteration of microvilli at the site of attachment have 
attracted the attention of some research groups.35 Ap-
parently, Cdc42 (a GTPase) and actin are recruited to 
the site of attachment early on in the process.36 Actin 
then aggregates, forming a kind of platform on top of 
which the organism then elaborates its complex of 
membranes. Much more needs to be learned about 
the mechanism(s) of nutrient acquisition by C. parvum 
before rational drug design aimed at interference with 
this process can evolve. 

Protection against the primary infection develops 
in individuals whose immune systems are not com-
promised. At least two classes of antibodies, IgA37 and 
IgG,23 and several cellular-based immune mechanisms 
are thought to play important roles in the elimination 
of the parasite from the gut tract, although the precise 
mechanisms responsible for this have yet to be de-
termined.38 Healthy human volunteers whose anti-C. 
parvum IgG levels were already present (exposed, im-
mune), required a higher dose of oocysts to become in-
fected, and developed fewer symptoms than their non-
exposed (non-immune) counterparts.23 Studies carried 
out in experimental infections employing various strains 
of inbred mice have shown that IL-12,39 gamma inter-
feron,38 and perhaps β-defensins,40, 41 peptides chemi-
cally related to magainins,42, 43 act in conjunction to pro-
tect against a challenge infection. Calves fed irradiated 
oocysts of C. parvum were protected from a challenge 
infection,44 implying that protection-inducing antigens 
are present in this stage of the infection. Patients suf-
fering from AIDS do not develop protective immunity. In 
underserved regions of the tropics, many children born 
with the HIV virus and who went on to develop AIDS 
are dying from this opportunistic infection.45

Clinical Disease

Two excellent reviews on the clinical aspects of 
cryptosporidiosis have been published.46, 47 In immuno-
competent individuals disease can vary from a mild to 
profuse watery diarrhea. Upper abdominal cramps, an-
orexia, nausea, weight loss, and vomiting are common 
features of the acute stage of the infection. In those 
who have already experienced clinical disease and re-
covered, a second infecting dose of oocysts may be 
asymptomatic, or they may have only a mild, transient 
diarrhea. Cryptosporidiosis is self-limited, lasting from 
several days to one month. 

Children are the most severely affected group,48 
as the diarrhea lasts longer, and there is usually some 
weight loss. Those undergoing cancer chemotherapies 
suffer worse yet, with protracted, life-threatening diar-
rhea accompanied by significant weight loss.49 

Cryptosporidiosis in patients suffering from AIDS is 
chronic, lasting months and even years, during which 
patients can lose more than three liters of fluid each 
day, and are in significant danger of dying; the case 
fatality rate is 50%. However, death is usually a result 
of associated conditions, such as malnutrition or super-
infection with other pathogens. Extraintestinal infection 
in the bile duct can cause acalculous biliary disease.

Diagnosis

Definitive diagnosis depends upon two approach-
es: identification of acid fast-stained oocysts (Fig. 10.1) 
by microscopy of stool samples50 and PCR.51 The latter 
test can identify cryptosporidium down to the species 
level. Oocysts are easily isolated from stool by flotation 
in sugar solution,52 then stained by acid-fast methods, 
or used in the IFA test. 

Treatment

Nitazoxanide is the drug of choice.32, 53Although 
use of this drug has been limited, so far it appears to 
be not effective when used to treat infections in HIV/
AIDS patients. 

Prevention and Control

Without knowledge as to the source of a given 
outbreak, control and prevention of infection due to 
C. parvum is not possible. In the case of waterborne 
epidemics,11 management of watersheds54 is the long-
term solution in situations where the water supply is 
not filtered. Filtering drinking water is usually effective, 
but deterioration of filtration equipment and/or lack of 
proper maintenance can erode any progress made 
in controlling waterborne infections.55 Chlorination of 
water supplies is ineffective against the oocyst, but 
ozonation kills this stage.56, 57 In agricultural settings, 
creation of vegetative barriers to curtail the spread of 
oocycts is effective.58 Surveillance is key to keeping 
public water supplies free of pathogens with environ-
mentally resistant stages (e.g., Giardia lamblia, Ent-
amoeba histolytica, Cryptosporidium parvum). In this 
regard, PCR-based testing now allows for the possi-
bility of continuous monitoring of water supplies for C. 
parvum.59 Urban and suburban pet stores and petting 
zoos for children are other sources of infection that until 
very recently have received little attention. 
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